K-vertex-connected graph - definitie. Wat is K-vertex-connected graph
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is K-vertex-connected graph - definitie


K-vertex-connected graph         
  • A graph with connectivity 4.
GRAPH THAT CANNOT BE DISCONNECTED BY THE DELETION OF FEWER THAN K VERTICES
K-connected graph; Vertex connectivity
In graph theory, a connected graph is said to be -vertex-connected (or -connected) if it has more than vertices and remains connected whenever fewer than vertices are removed.
Biconnected graph         
  • A biconnected graph on four vertices and four edges
  • A graph that is not biconnected. The removal of vertex x would disconnect the graph.
  • A biconnected graph on five vertices and six edges
  • A graph that is not biconnected. The removal of vertex x would disconnect the graph.
TYPE OF GRAPH
Bi-connected graph
In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices.
Universal vertex         
  • u}}
VERTEX OF AN UNDIRECTED GRAPH THAT IS ADJACENT TO ALL OTHER VERTICES OF THE GRAPH. IT MAY ALSO BE CALLED A DOMINATING VERTEX, AS IT FORMS A ONE-ELEMENT DOMINATING SET IN THE GRAPH
Dominating vertex; Cone (graph theory)
In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph.